Ethernity Networks powers its All Programmable NIC with Kintex-7 today, in the cloud on AWS EC2 F1 tomorrow, Zynq MPSoC later

2017年6月10日 | By News | Filed in: News.

http://ift.tt/2snjCnQ

 

Light Reading’s International Group Editor Ray Le Maistre recently interviewed David Levi, CEO of Ethernity Networks, who discusses the company’s FPGA-based All Programmable ACE-NIC, a Network Interface Controller with 40Gbps throughput. The carrier-grade ACE-NIC accelerates vEPC (virtual Evolved Packet Core, a framework for virtualizing the functions required to converge voice and data on 4G LTE networks) and vCPE (virtual Customer Premise Equipment, a way to deliver routing, firewall security and virtual private network connectivity services using software rather than dedicated hardware) applications by 50x, dramatically reducing end-to-end latency associated with NFV platforms. Ethernity’s ACE-NIC is based on a Xilinx Kintex-7 FPGA.

 

“The world is crazy about our solution—it’s amazing,” says Levi in the Light Reading video interview.

 

 

Ethernity Networks ACE-NIC.jpg

 

Ethernity Networks All Programmable ACE-NIC

 

 

Because Ethernity implements its NIC IP in a Kintex-7 FPGA, it was natural for Le Maistre to ask Levi when his company would migrate to an ASIC. Levi’s answer surprised him:

 

“We offer a game changer… We invested in technology—which is covered by patents—that consumes 80% less logic than competitors. So essentially, a solution that you may want to deliver without our patents will cost five times more on FPGA… With this kind of solution, we succeed over the years in competing with off-the-shelf components… with the all-programmable NIC, operators enjoy the full programmability and flexibility at an affordable price, which is comparable to a rigid, non-programmable ASIC solution.”

 

In other words, Ethernity plans to stay with All Programmable devices for its products. In fact, Ethernity Networks announced last year that it had successfully synthesized its carrier-grade switch/router IP for the Xilinx Zynq UltraScale+ MPSoC and that the throughput performance increases to 60Gbps per IP core with the 16nm device—and 120Gbps with two instances of that core. “We are going to use this solution for novel SDN/NFV market products, including embedded SR-IOV (single-root input/output virtualization), and for high density port solutions,” – said Levi.

 

Towards the end of the video interview, Levi looks even further into the future when he discusses Amazon Web Services’ (AWS’) recent support of FPGA acceleration. (That’s the Amazon EC2 F1 compute instance based on Xilinx Virtex UltraScale+ FPGAs rolled out earlier this year.) Because it’s already based on Xilinx All Programmable devices, Ethernity’s networking IP runs on the Amazon EC2 F1 instance. “It’s an amazing opportunity for the company [Ethernity],” said Levi. (Try doing that in an ASIC.)

 

Here’s the Light Reading video interview:

 

 

 

 

 

IT.数码

via Xcell Daily Blog articles http://ift.tt/2fBJIws

June 9, 2017 at 11:16PM


发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注